Accurate Approximation Series for Optimal Targeting Regions in a Neural Growth Model with a Low –branching Probability
نویسندگان
چکیده
Understanding the complex growth process of dendritic arbors is essential for the medical field and disciplines like Biology and Neurosciences. The establishment of the dendritic patterns has received increasing attention from experimental researchers that seek to determine the cellular mechanisms that play a role in the growth of neural trees. Our goal in this thesis was to prove the recurrence formula for the probability distribution of all possible neural trees, as well as the formulas of the expected number of active branches and their variances. We also derived formulas for the spatial locations of the optimal targeting region for a tree with branching probability. These formulas were necessary for the simplified stochastic computational model that Osan et al have developed in order to examine how changes in branching probability influence the success of targeting neurons located at different distances away from a starting point. INDEX WORDS: Growth of neural trees, Computational model, Stochastic branching probability, Expected number of active branches, Variances, Recurrence formula. ACCURATE APPROXIMATION SERIES FOR OPTIMAL TARGETING REGIONS IN A NEURAL GROWTH MODEL WITH A LOW –BRANCHING PROBABILITY
منابع مشابه
A Nonlinear Model of Economic Data Related to the German Automobile Industry
Prediction of economic variables is a basic component not only for economic models, but also for many business decisions. But it is difficult to produce accurate predictions in times of economic crises, which cause nonlinear effects in the data. Such evidence appeared in the German automobile industry as a consequence of the financial crisis in 2008/09, which influenced exchange rates and a...
متن کاملPM10 AIR POLLUTION IN MASHAD CITY USING ARTIFICIAL NEURAL NETWORK AND MAKOV CHAIN MODEL
Suspended particles management is one of the important issues in controlling the air pollution of cities. These particles cause and develop heart and respiratory diseases in people. Mashhad is considered as one of the main and populous cities of Iran. Because of its climatic conditions and its tourism, the city is at the highest risk of this type of pollution. We attempted to use the multi-l...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملGDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers
Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...
متن کاملAn Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model
In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015